Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Masaki Kakeya, Takashi Fujihara* and Akira Nagasawa

Department of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (S–C) = 0.003 Å R factor = 0.023 wR factor = 0.056 Data-to-parameter ratio = 28.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-µ-chloro-µ-(dimethyl sulfide)-bis[dichloro-(dimethyl sulfide)niobium(III)]

The title compound, $[Nb_2Cl_6(C_2H_6S)_3]$, contains an Nb^{III} = Nb^{III} double bond [2.6880 (3) Å]. Each Nb atom has a distorted octahedral coordination environment formed by two terminal and two bridging Cl⁻ ions, and one monodentate and one bridging Me₂S ligands.

Received 12 January 2006 Accepted 13 February 2006

Comment

Transition metal complexes containing solvent as a ligand are utilized as precursors in various substitution reactions. As part of a systematic investigation of the properties of niobium complexes which contains solvent as ligands, we have recently reported the crystal structure of $[Nb_2(\mu-Cl)_2Cl_4(CH_3CN)_4]$ -2CH₃CN, (II), which contains an Nb^{III}=Nb^{III} double bond (Kakeya *et al.*, 2004). We report here the structure of the title compound, (I), which is a triply bridged dinuclear niobium complex containing solvent dimethyl sulfide as ligands. The synthesis of (I) has been previously reported by Tsunoda & Hubert-Pfalzgraf (1982) as a precursor to other niobium complexes with μ -Cl ligands.

Compound (I) contains a dinuclear unit $[Nb_2(\mu-Cl)_2(\mu-Me_2S)]$ with the terminal Me₂S ligands in a *trans* orientation to the bridging one (Fig. 1 and Table 1). The average Nb-(μ -Cl) and Nb-(μ -Me₂S) distances of 2.498 (6) and 2.425 (2) Å, respectively, fall within the range of those for $[Nb_2(\mu-Cl)_2Cl_4(\mu-Me_2S)(C_4H_8O)_2]$, which has the same bridging unit (Cotton *et al.*, 1985). The terminal Nb-Cl and Nb-S bond lengths are shorter and longer, respectively, than the corresponding distances to the bridging atoms. The Nb-S-Nb bond angle is slightly larger than the Nb-Cl-Nb angles. These differences may arise from the difference in the nature of the coordination bonds. On the Me₂S-Nb-SMe₂ axis, the bridging bonding is favorable, while the terminal polarized Cl-Nb bond is stronger than the bridging Cl-Nb bond on the Cl-Nb-Cl axis. Other geometrical parameters also lie

© 2006 International Union of Crystallography All rights reserved

Figure 1

A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

within the same ranges as in analogous dinuclear niobium complexes (Babaian-Kibala et al., 1991; Cotton et al., 1984, 1985).

Experimental

Reactions were carried out under an atmosphere of purified argon using standard Schlenk techniques. A mixture of Nb₂Cl₁₀ (2.3 g, 4.3 mmol), dimethyl sulfide (1.71 ml, 23.4 mmol), and Mg (0.57 g, 23.4 mmol) was dissolved in a mixture of CH₂Cl₂ (75 ml) and Et₂O (11.5 ml) at room temperature. The mixture was stirred for 2 days at room temperature. A precipitate formed which was removed by suction filtration. The resultant filtrate was concentrated to dryness, leaving a purple powder. The crude product was washed with hexane and dried under reduced pressure. Compound (I) was recrystallized from CH₂Cl₂-hexane (1:7) to give purple crystals (2.2 g, 88% yield). ¹H NMR (CDCl₃): δ 3.33 (6H, μ-Me₂S), 2.63 (12H, terminal-SMe₂); ¹³C NMR (CDCl₃): δ 30.0 (2C, μ-Me₂S), 22.7 (4C, terminal Me₂S); ⁹³Nb NMR (CDCl₃): δ -495 (W_{1/2} = 1320 Hz); elemental analysis calculated for C₆H₁₈Cl₆Nb₂S₃: C 12.38, H 3.10%; found: C 12.32, H 2.93%.

Crystal data

$[Nb_2Cl_6(C_2H_6S)_3]$	$D_x = 2.020 \text{ Mg m}^{-3}$	
$M_r = 584.90$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 7953	
a = 8.0002 (8) Å	reflections	
b = 11.3868 (11) Å	$\theta = 2.6-27.9^{\circ}$	
c = 21.446 (2) Å	$\mu = 2.33 \text{ mm}^{-1}$	
$\beta = 100.040 \ (2)^{\circ}$	T = 173 (2) K	
V = 1923.7 (3) Å ³	Block, violet	
Z = 4	$0.41 \times 0.40 \times 0.39 \text{ mm}$	

Data collection

Bruker SMART APEX CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.390, T_{max} = 0.403$	4586 independent reflections 4293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.9^{\circ}$ $h = -7 \rightarrow 10$ $k = -13 \rightarrow 14$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$	$l = -28 \rightarrow 25$ $w = 1/[\sigma^2(F_0^2) + (0.0255P)^2 + 0.7014P]$

 $wR(F^2) = 0.056$ S = 1.104586 reflections 160 parameters H-atom parameters constrained

$\theta_{\rm max} = 27.9^{\circ}$
$h = -7 \rightarrow 10$
$k = -13 \rightarrow 14$
$l = -28 \rightarrow 25$
2 2 2
$m = 1/[\sigma^2(E^2) + (0.0255P)^2$

$W = 1/[O(F_0) + (0.0255F)]$
+ 0.7014P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cl1-Nb1	2.3853 (6)	Cl6-Nb2	2.3756 (6)
Cl2-Nb1	2.3715 (6)	Nb1-S2	2.4262 (6)
Cl3-Nb1	2.5043 (6)	Nb1-S1	2.6409 (6)
Cl4-Nb1	2.5026 (6)	Nb1-Nb2	2.6880 (3)
Cl3-Nb2	2.5168 (6)	Nb2-S2	2.4233 (6)
Cl4-Nb2	2.4920 (6)	Nb2-S3	2.6477 (6)
Cl5-Nb2	2.3845 (6)		
Nb1-Cl3-Nb2	64.735 (15)	S2-Nb1-Nb2	56.285 (14)
Nb2-Cl4-Nb1	65.120 (15)	S2-Nb2-S3	173.66 (2)
S2-Nb1-S1	169.14 (2)		

The H atoms were placed in calculated positions, with C-H =0.98 Å for CH₃, and refined using a riding model, with $U_{iso}(H) =$ $1.2U_{\rm eq}$ of the carrier atoms.

Data collection: SMART-W2K/NT (Bruker, 2003); cell refinement: SAINT-W2K/NT (Bruker, 2003); data reduction: SAINT-W2K/NT; program(s) used to solve structure: SHELXTL-NT (Bruker, 2003); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL-NT.

References

- Babaian-Kibala, E., Cotton, F. A. & Kibala, P. A. (1991). Acta Cryst. C47, 1617-1621
- Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Duraj, S. A. & Roth, W. J. (1984). J. Am. Chem. Soc. 106, 4749-4751

Cotton, F. A., Duraj, S. A. & Roth, W. J. (1985). Acta Cryst. C41, 878-881.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Kakeya, M., Fujihara, T. & Nagasawa, A. (2004). Acta Cryst. E60, m893-m894. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Tsunoda, M. & Hubert-Pfalzgraf, L. G. (1982). Inorg. Synth. 21, 16-18.